Modelling of vertical-cavity surface-emitting laser beam collimation using a nanostructured gradient index microlens

نویسندگان

  • JĘDRZEJ M. NOWOSIELSKI
  • ANDREW J. WADDIE
  • MOHAMMAD R. TAGHIZADEH
  • RYSZARD BUCZYŃSKI
چکیده

In this paper we show that the recently developed nanostructured gradient index (nGRIN) rod microlens can be utilised for the collimation of the beam generated by a vertical-cavity surface-emitting laser (VCSEL). The modelling of the nanostructured lens structure is performed using the finite difference time domain (FDTD) method with realistic nGRIN parameters and a Gaussian model of the light source. The large refractive index gradient of the nanostructured microlens allows the final microlens thickness to be only 70 μm with a diameter of 10 μm. Successful collimation of a single-mode VCSEL beam with a waist half-width of 1.53 μm is presented with a reduction in divergence half-angle from 10.1° to 3.3°. We show that the linear polarisation of the incident beam is preserved as well as presenting the tolerance of this type of lens to variations in overall thickness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)

Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...

متن کامل

Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes.

We analyze the effect of cross-talk noise on the performance of free-space optical interconnects (FSOIs). In addition to diffraction-caused cross talk, we consider the effect of stray-light cross-talk noise, an issue that, to the best of our knowledge, was not addressed previously. Simulations were performed on a microlens-based FSOI system using the modal composition and beam profiles experime...

متن کامل

Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the diffe...

متن کامل

Vertical Cavity Surface Emitting Laser with AlGaInAs/InP Bragg mirrors fabricated for operation at 1.55 μm

The authors present the design and performance of a low threshold selectively oxidized Vertical Cavity Surface Emitting Laser (VCSEL) fabricated for operation at a wavelength of 1.55μm. The device is based on III-V quaternary semiconductor alloys and is grown by Molecular Beam Epitaxy technique. The theoretical investigation of the optical properties of the compound semiconductor alloys allows ...

متن کامل

Vertical Cavity Surface Emitting Laser with AlGaInAs/InP Bragg mirrors fabricated for operation at 1.5 μm

The authors present the design and performance of a low threshold selectively oxidized Vertical Cavity Surface Emitting Laser (VCSEL) fabricated for operation at a wavelength of 1.55μm. The device is based on III-V quaternary semiconductor alloys and is grown by Molecular Beam Epitaxy technique. The theoretical investigation of the optical properties of the compound semiconductor alloys allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014